

Experimental Strengths

D0 Experiment

Central tracking detector (silicon, scintillating fibers): impact parameter (IP) resolution ~35µm;

Wide acceptance in three-layered muon system ($|\eta| < 2.2$);

Thick shielding before muon system – hadronic punch-though suppressed.

Regular reversal of toroid (muonsystem) and solenoid (tracker) magnet polarities – cancels many detector asymmetries.

CPV in Mixing

Neutral $B^0_{(q=d,s)}$ mesons mix into their antiparticles via box diagrams:

characterizing B⁰_a system

Process **not CP symmetric** $-\mathbf{R}(\mathbf{B_q^0} \to \mathbf{\bar{B}_q^0}) \neq \mathbf{R}(\mathbf{\bar{B}_q^0} \to \mathbf{B_q^0}) - \text{due to complex phase } \varphi_{(d,s)} \text{ in quark mixing matrix, but...}$

...SM prediction of resulting asymmetry is **tiny**, much smaller than experimental precision. **New particles** entering loops can enhance this asymmetry significantly.

Measure CPV through asymmetry of decay products.

Flavor-specific semileptonic asymmetries defined for both B_{s}^{0} and B_{d}^{0} :

$$a^{q}_{sl} = \frac{\Gamma(\overline{\mathbf{B}^{0}}_{\mathbf{q}} \to B^{0}_{\mathbf{q}} \to \boldsymbol{\mu}^{+}X) - \Gamma(\mathbf{B^{0}}_{\mathbf{q}} \to \overline{B^{0}}_{\mathbf{q}} \to \boldsymbol{\mu}^{-}X)}{\Gamma(\overline{\mathbf{B}^{0}}_{\mathbf{q}} \to B^{0}_{\mathbf{q}} \to \boldsymbol{\mu}^{+}X) + \Gamma(\mathbf{B^{0}}_{\mathbf{q}} \to \overline{B^{0}}_{\mathbf{q}} \to \boldsymbol{\mu}^{-}X)} = \frac{\Delta\Gamma_{\mathbf{q}}}{\Delta M_{\mathbf{q}}} \tan \varphi_{\mathbf{q}}$$
Physical parameters

Measuring CPV in Mixing

D0 experiment measures an inclusive asymmetry, with contributions from both B_d^0 and B_s^0 :

$$a^{b}_{sl} = \frac{N(\overline{\mathbf{B}^{0}} \to \mu^{+}X) - N(\mathbf{B}^{0} \to \mu^{-}X)}{N(\overline{\mathbf{B}^{0}} \to \mu^{+}X) + N(\mathbf{B}^{0} \to \mu^{-}X)} = C_{d}a^{d}_{sl} + C_{s}a^{s}_{sl}$$

$$More \ B^{0}_{d} \ produced, \ but \ most \ decay \ before \ mixing: C_{+} \approx C_{-} \approx 0.5$$

mixing: $C_d \approx C_s \approx 0.5$

Challenge: separate signal (semileptonic *mixed* decays of B mesons) from the many other muon-producing backgrounds.

To suppress such backgrounds, require second muon of the same charge:

$$A^{b}_{sl} = \frac{N(b\bar{b} \to \mu^{+}\mu^{+}) - N(b\bar{b} \to \mu^{-}\mu^{-})}{N(b\bar{b} \to \mu^{+}\mu^{+}) + N(b\bar{b} \to \mu^{-}\mu^{-})} = a^{b}_{sl} \qquad (0.028 \pm 0.006)\% \text{ in S.M.}$$

We therefore have two ways to extract a^{b}_{sl} , and take advantage of the correlated backgrounds by combining the two measurements.

- 1) Measure 'raw' asymmetries by counting single muons (n[±]) and dimuon events (N^{±±});
- 2) Express in terms of a^b_{sl} :

Weighted average over bins of muon p_T flavor decays

- 1) Measure 'raw' asymmetries by counting single muons (n[±]) and dimuon events (N^{±±});
- 2) Express in terms of a_{sl}^b :

$$\mathbf{a} \equiv \frac{n^{+} - n^{-}}{n^{+} + n^{-}} = \sum_{i=0}^{5} f_{\ \mu}^{i} \left\{ f_{s}^{\ i} \left(c_{b} \boldsymbol{a}^{b}_{sl} + \delta_{i} \right) + f_{k}^{\ i} a_{k}^{\ i} + f_{\pi}^{\ i} a_{\pi}^{\ i} + f_{p}^{\ i} a_{p}^{\ i} \right\}$$

Asymmetries from backgrounds and detector effects

 $(c_{b}\boldsymbol{a^{b}}_{sl} + \delta_{i}) + f_{k}{}^{i}a_{k}{}^{i} + f_{\pi}{}^{i}a_{\pi}{}^{i} + f_{p}{}^{i}a_{p}{}^{i})$ Kaon DIF and punch-through

Pion DIF and punch-through

...proton punch-through

Residual muon reconstruction asymmetries (almost entirely cancelled by magnet polarity reversal)

- 1) Measure 'raw' asymmetries by counting single muons (n[±]) and dimuon events (N^{±±});
- 2) Express in terms of a_{sl}^b :

$$\mathbf{a} \equiv \frac{n^+ - n^-}{n^+ + n^-} = \sum_{i=0}^{5} f^i_{\ \mu} \ \{ f_s^{\ i} \left(c_b \mathbf{a}^b_{\ sl} + \ \delta_i \right) \ + f_k^{\ i} a_k^{\ i} + f_\pi^{\ i} a_\pi^{\ i} + f_p^{\ i} a_p^{\ i} \, \}$$

Asymmetry from heavy-flavor decays

Dilution factor
(muons from charge
symmetric HF processes)

What we want to extract

Remaining fraction of muons after kaon, pion, proton components taken into account: i.e. "Heavy Flavor Fraction"

Similar expression for dimuon case. Many BG quantities are the same, or highly correlated, e.g. presence of second muon doesn't change kaon asymmetry a_k^i .

3) Measure all quantities $f_{k,\pi,p}^{i}$, $a_{k,\pi,p}^{i}$, δ_{i} in data, with limited input from simulation;

= +0.776 ± 0.021 % asymmetry from kaons

3) Measure all quantities $f_{k,\pi,p}^{i}$, $a_{k,\pi,p}^{i}$, δ_{i} in data, with limited input from simulation;

30th August 2011

Analysis Strategy

3) Measure all quantities $f_{k,\pi,p}^{i}$, $a_{k,\pi,p}^{i}$, δ_{i} in data, with limited input from simulation;

3) Measure all quantities $f_{k,\pi,p}^{i}$, $a_{k,\pi,p}^{i}$, δ_{i} in data, with limited input from simulation;

Contribution from residual muon reconstruction asymmetry: $\sum_{i}(1-f_{k}{}^{i}-f_{\pi}{}^{i}-f_{p}{}^{i})\delta_{i}=-0.047\pm0.012~\%$

inclusive muon	like-sign dimuon
$+0.776 \pm 0.021$	$+0.633 \pm 0.031$
$+0.007 \pm 0.027$	-0.002 ± 0.023
-0.014 ± 0.022	-0.016 ± 0.019
-0.047 ± 0.012	-0.212 ± 0.030
$+0.722 \pm 0.042$	$+0.402 \pm 0.053$
$+0.688 \pm 0.002$	$+0.126 \pm 0.041$
-0.034 ± 0.042	-0.276 ± 0.067
	$+0.776 \pm 0.021$ $+0.007 \pm 0.027$ -0.014 ± 0.022 -0.047 ± 0.012 $+0.722 \pm 0.042$ $+0.688 \pm 0.002$

4) Account for dilution from charge-symmetric processes (i.e. determine coefficients c_b , C_b):

	Process	Weight
T_1	$b \to \mu^- X$	$w_1 \equiv 1.$
T_{1a}	$b \to \mu^- X$ (nos)	$w_{1a} = (1 - \chi_0)w_1$
T_{1b}	$\overline{b} ightarrow b ightarrow \mu^- X$ (osc)	$w_{1b} = \chi_0 w_1$
T_2	$b \to c \to \mu^+ X$	$w_2 = 0.096 \pm 0.012$
T_{2a}	$b \to c \to \mu^+ X \text{ (nos)}$	$w_{2a} = (1 - \chi_0)w_2$
T_{2b}	$\overline{b} \to b \to c \to \mu^+ X \text{ (osc)}$	$w_{2b} = \chi_0 w_2$
T_3	$b \to c\overline{c}q$ with $c \to \mu^+ X$ or $\overline{c} \to \mu^- X$	$w_3 = 0.064 \pm 0.006$
T_{4}	$\eta, \omega, \rho^0, \phi(1020), J/\psi, \psi' \to \mu^+\mu^-$	$w_4 = 0.021 \pm 0.002$
T_{5}	$b\overline{b}c\overline{c}$ with $c \to \mu^+ X$ or $\overline{c} \to \mu^- X$	$w_5 = 0.013 \pm 0.002$
T_6	$c\overline{c}$ with $c \to \mu^+ X$ or $\overline{c} \to \mu^- X$	$w_6 = 0.675 \pm 0.101$

Weights measured using simulation This analysis uses LEP value for χ_0 , following recent CDF update.

Results:

$$c_b = 0.061 \pm 0.007$$

Inclusive muon sample dominated by charge-symmetric backgrounds (94%)

$$C_b = 0.474 \pm 0.032$$

Dimuon sample has a large contribution (47%) from mixed B mesons (remember: around 50% each of B_d^0 and B_s^0)

Results with 9fb⁻¹

Final asymmetry from both samples:

From inclusive muon sample: $A_{sl}^b = [-1.04 \pm 1.30 \text{ (stat.)} \pm 2.31 \text{ (syst.)}] \%$

 $(2.041 \times 10^9 \text{ muons})$

From like-sign dimuon sample: $A_{sl}^b = [-0.808 \pm 0.202 \text{ (stat.)} \pm 0.222 \text{ (syst.)}] \%$

 $(6.019 \times 10^6 \text{ muons})$

Now use **linear combination** of inclusive and dimuon asymmetries, $A' = A - \alpha a$ with $\alpha = 0.89$ chosen to minimise total uncertainty on A_{sl}^b :

$$A^{b}_{sl} = [$$
 -0.787 \pm 0.172 (stat.) \pm 0.093 (syst.)] %

This result differs from the SM prediction by 3.9σ

Systematic uncertainty reduces significantly due to extra information in (background dominated) inclusive muon sample

Results with 9fb⁻¹

 $\mathbf{A^b}_{sl} = (0.594 \pm 0.022) \cdot a^d_{sl} + (0.406 \pm 0.22) \cdot a^s_{sl}$

Use *sample composition* and *mixing probability* to express as constraint in (a^d_{sl}, a^s_{sl}) plane.

Results consistent with previous measurements of flavor-specific asymmetries.

Comparison with Previous Result

$$A^{b}_{sl} = [-0.957 \pm 0.251 \text{ (stat.)} \pm 0.146 \text{ (syst.)}] \%$$

3.2σ

$$A_{sl}^b = [-0.891 \pm 0.204 \text{ (stat.)} \pm 0.128 \text{ (syst.)}] \%$$

$$A_{sl}^b = [-0.600 \pm 0.335 \text{ (stat.)} \pm 0.188 \text{ (syst.)}] \%$$

So what's new?

- o Event selection optimized:
 - Looser minimum $|p_z|$ cut (6.4 \rightarrow 5.4 GeV) based on new study of detector thickness;
 - Tighter match required between muon track and central track reduces BG contribution from D.I.F.;
- O New method to extract ratio of kaon fractions in two samples $\mathbf{R}_{\mathbf{k}} = \mathbf{F}_{\mathbf{k}}/\mathbf{f}_{\mathbf{k}}$: eliminates dependence on mass resolution, and better quantifies correlations.
- \circ Second, independent channel used to measure $\mathbf{R}_{\mathbf{k}}$: consistent results found.

Cross-Checks

Measured inclusive muon asymmetry a is dominated by background: should match a_{bkg} :

Dimuon asymmetry versus $M(\mu\mu)$ – inconsistent with SM, but consistent with measured A_{sl}^b .

Cross-Checks

Measured inclusive muon asymmetry a is dominated by background: should match a_{bkg} :

Dimuon asymmetry versus $M(\mu\mu)$ – inconsistent with SM, but consistent with measured A_{sl}^b .

Cross-Checks

Measured inclusive muon asymmetry a is dominated by background: should match a_{bkg} :

Dimuon asymmetry versus $M(\mu\mu)$ – inconsistent with SM, but consistent with measured A_{sl}^b .

Measurement also repeated with many different requirements to enhance/suppress backgrounds. Final A_{sl}^b consistent in all samples (Total $\chi^2 = 16$ for 18 different tests)

Dependence on Impact Parameter

Muon impact parameter strongly influences:

By dividing into two samples corresponding to $IP(\mu) < 120\mu m$ and $IP(\mu) > 120\mu m$, we can:

- 1) Confirm stable measurement in background enhanced and suppressed samples;
- 2) Test for larger asymmetry from B_d^0 or B_s^0 mesons:

for IP(
$$\mu$$
) < 120 μ m: $A^b_{sl} = (0.397 \pm 0.053) a^d_{sl} + (0.603 \pm 0.053) a^s_{sl}$
IP(μ) > 120 μ m: $A^b_{sl} = (0.728 \pm 0.030) a^d_{sl} + (0.272 \pm 0.030) a^s_{sl}$

Dependence on Impact Parameter

Quantity	antity $IP_{>120}$ $IP_{<120}$		
$f_{K} \times 10^{2}$	5.19 ± 0.37	17.64 ± 0.27	
$f_\pi imes 10^2$	5.65 ± 0.40	34.72 ± 1.86	$igcap_{}$
$f_p \times 10^2$	0.05 ± 0.03	0.45 ± 0.20	
$F_K imes 10^2$	4.48 ± 4.05	21.49 ± 0.62	
$F_\pi imes 10^2$	4.43 ± 3.95	40.47 ± 2.26	L
$F_p imes 10^2$	0.03 ± 0.05	0.59 ± 0.23	ſ
$f_S \times 10^2$	89.11 ± 0.88	47.18 ± 2.03	
$F_{ m bkg} imes 10^2$	8.94 ± 8.26	62.56 ± 3.07	
$F_{SS} \times 10^2$	91.79 ± 7.65	53.66 ± 2.68	
$a \times 10^{2}$	-0.014 ± 0.005	$+0.835 \pm 0.002$	
$a_{ m bkg} imes 10^2$	$+0.027 \pm 0.023$	$+0.864 \pm 0.049$	
$A \times 10^2$	-0.529 ± 0.120	$+0.555 \pm 0.060$	
$A_{\rm bkg} imes 10^2$	-0.127 ± 0.093	$+0.829 \pm 0.077$	

Kaon and pion fractions much lower in IP>120μm sample

> HF fraction increases from ~50% → ~90%

Even inclusive muon asymmetry significantly different from BG expectation for IP>120µm

Dependence on Impact Parameter

Quantity	$IP_{>120}$	$IP_{<120}$
$f_{K} \times 10^{2}$	5.19 ± 0.37	17.64 ± 0.27
$f_\pi imes 10^2$	5.65 ± 0.40	34.72 ± 1.86
$f_p \times 10^2$	0.05 ± 0.03	0.45 ± 0.20
$\dot{F}_K \times 10^2$	4.48 ± 4.05	21.49 ± 0.62
$F_\pi imes 10^2$	4.43 ± 3.95	40.47 ± 2.26
$F_p imes 10^2$	0.03 ± 0.05	0.59 ± 0.23
$f_S \times 10^2$	89.11 ± 0.88	47.18 ± 2.03
$F_{ m bkg} imes 10^2$	8.94 ± 8.26	62.56 ± 3.07
$F_{SS} \times 10^2$	91.79 ± 7.65	53.66 ± 2.68
$a \times 10^2$	-0.014 ± 0.005	$+0.835 \pm 0.002$
$a_{ m bkg} imes 10^2$	$+0.027 \pm 0.023$	$+0.864 \pm 0.049$
$A \times 10^2$	-0.529 ± 0.120	$+0.555 \pm 0.060$
$A_{\rm bkg} imes 10^2$	-0.127 ± 0.093	$+0.829 \pm 0.077$
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

Kaon and pion fractions much lower in IP>120μm sample

> HF fraction increases from \sim 50% \rightarrow \sim 90%

Even inclusive muon asymmetry significantly different from BG expectation for IP>120µm

Measured asymmetry larger in B⁰_d suppressed sample, but too early to make strong conclusions.

$IP < 120 \mu \mathrm{m}$	1μ	-1.654	2.774	4.962
	2μ	-1.175	0.439	0.590
	comb.	-1.138	0.366	0.323
$IP > 120 \mu \mathrm{m}$	1μ	-0.422	0.240	0.121
	2μ	-0.818	0.342	0.067
	comb.	-0.579	0.210	0.094

Conclusions

- **Dimuon asymmetry** offers a tantalizing possibility for BSM physics in B meson mixing:
 - \circ Current measurement **inconsistent with SM** at the ~4 σ level
 - o D0 already planning next update with more use of IP information
 - Need independent confirmation from other experiments.
- Further studies ongoing in exclusive decay modes to extract *flavor-specific* asymmetries in B^0 and B^0_s systems.
- We thank the community for their interest and ideas.

arXiv:1106.6308 [hep-ex] (accepted by PRD one week ago, 23rd August 2011)